Intersections on Tropical Moduli Spaces
نویسنده
چکیده
This article tries to answer the question: How far can the algebro-geometric theory of rational descendant Gromov-Witten invariants be carried over to the tropical world? Given the fact that our moduli spaces are non-compact, the answer is surprisingly positive: We discuss universal families and the string, divisor and dilaton equations, we prove a splitting lemma describing the intersection with a “boundary” divisor and we give two criteria that suffice to prove the tropical version of a particular WDVV or topological recursion equation. Discussing these criteria in the case of curves in R1 or R2, we prove, for example, that for the toric varieties P1, P2, P1 × P1, F1, Bl2(P), Bl3(P) and with Psi-conditions only in combination with point conditions, the tropical and conventional descendant Gromov-Witten invariants coincide. In particular, we can unify and simplify the proofs of the previous tropical enumerative results.
منابع مشابه
Intersections of Tautological Classes on Blowups of Moduli Spaces of Genus-One Curves
We give two recursions for computing top intersections of tautological classes on blowups of moduli spaces of genus-one curves. One of these recursions is analogous to the well-known string equation. As shown in previous papers, these numbers are useful for computing genusone enumerative invariants of projective spaces and Gromov-Witten invariants of complete intersections.
متن کاملThe Diagonal of Tropical Matroid Varieties and Cycle Intersections
We define an intersection product of tropical cycles on matroid varieties (via cutting out the diagonal) and show that it is well-behaved. In particular, this enables us to intersect cycles on moduli spaces of tropical rational marked curves Mn and Mlab n (∆,Rr). This intersection product can be extended to smooth varieties (whose local models are matroid varieties). We also study pull-backs of...
متن کاملGeometry of Meromorphic Functions and Intersections on Moduli Spaces of Curves
In this paper we study relations between intersection numbers on moduli spaces of curves and Hurwitz numbers. First, we prove two formulas expressing Hurwitz numbers of (generalized) polynomials via intersections on moduli spaces of curves. Then we show, how intersection numbers can be expressed via Hurwitz numbers. And then we obtain an algorithm expressing intersection numbers 〈τn,m ∏r−1 i=1 ...
متن کاملIntersecting Psi-classes on Tropical M 0,n
We apply the tropical intersection theory developed by L. Allermann and J. Rau to compute intersection products of tropical Psi-classes on the moduli space of rational tropical curves. We show that in the case of zero-dimensional (stable) intersections, the resulting numbers agree with the intersection numbers of Psi-classes on the moduli space of n-marked rational curves computed in algebraic ...
متن کاملTopology of Moduli Spaces of Tropical Curves with Marked Points
In this paper we study topology of moduli spaces of tropical curves of genus g with n marked points. We view the moduli spaces as being imbedded in a larger space, which we call the moduli space of metric graphs with n marked points. We describe the shrinking bridges strong deformation retraction, which leads to a substantial simplification of all these moduli spaces. In the rest of the paper, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008